PAGE
3

ICS 103: Computer Programming in C

Lab #6: Text Data Files

Objective:

Learning how to use text data files for input and output.
Data Files:
When dealing with a large amount of data, it may be more convenient to read inputs and produce outputs, to and from files, rather than manually typing in inputs and printing outputs to the screen. Data files also provide data persistence.
Difference between text files (ASCII files) and binary files

While both binary and text files contain data stored as a series of bits (binary values of 1s and Os), the bits in text files represent characters, while the bits in binary represent custom data. A plain text file contains no formatting codes whatsoever, no fonts, bold, italics or underlines, headers, footers or graphics.

A typical plain text file contains several lines of text that are each followed by an End-of-Line (EOL) character. An End-of-File (EOF) marker is placed after the final character, which signals the end of the file.
Using data files for input and output

The process of using data files for input/output involves the following four steps:
1- Declare pointer variables of type FILE* to represent the files within the C program. The declaration is
 of the form:

 FILE *pointerVariableName;

 where pointerVariableName is any valid C variable name.

 Example:

 FILE *infile, //pointer variable for the input file

 *outfile; //pointer variable for the output file
2- Open the files for reading/writing using the fopen function. The fopen function creates a
 correspondence between the pointerVariableName for the file and the file's external name.
 The syntax of fopen is:
 pointerVariableName = fopen(fileExternalName, mode);
 Examples:

infile = fopen("data.txt", "r"); // open data.txt for reading
outfile = fopen(“result.txt", “w"); // open result.txt for writing
Note:
· The prototype for fopen is defined in the stdio.h header file.

· fopen returns the system named constant NULL if the operation is not successful; otherwise the starting address of the file is returned.

In dealing with files, it is always a good practice to verify if the file has been opened successfully before performing read operations. This is because reading from a file that has not been opened successfully will results in run time error, causing the program to terminate abnormally.
The following is an example of statements that handle the file not found error:
if(infile == NULL) {

 printf(“file not found”);

 system("PAUSE");

 exit(1); // exit the program with error code 1
}
The test can be done when attempting to open the file:

 if((infile = fopen("data.txt", "r")) == NULL){

 printf(“file not found”);

 system("PAUSE");

 exit(1); // exit the program with error code 1

}
The basic modes for opening files are:
	"r"
	Open a text file for reading. Error if the file does not exist

	"r+"
	Open a text file for reading and writing. Error if the file does not exist

	"w"
	Open a text file for writing and create the file if it does not exist. If the file exists then make it blank.

	"w+"
	Open a text file for reading and writing and create the file if it does not exist. If the file exists then make it blank.

	"a"
	Open a text file for appending (writing at the end of file) and create the file if it does not exist.

	"a+"
	Open a text file for reading and appending and create the file if it does not exist.

Note: The only modes that will be used in this course are "r" and "w". The others are just mentioned for your information.
Specifying a file-path in fopen

If a data file is not in the same folder as the program accessing it, the full path of the file must be used in the fopen statement. There are two ways to do this:

· separate folder names by a forward slash: /
· separate folder names by two back slashes: \\
 Examples:

 FILE *infile1, *infile2, *outfile;

 infile1 = fopen("D:/term01/ics103 Files/inputData.txt", "r");

 infile2 = fopen("D:\\term01\\ics103 Files\\data2.txt", "r");

 outfile = fopen("E:\\MyFiles\\output.txt", "w");

 // . . .
3- Read/write from/to the files using file input/output functions.

 Some file input functions:

	function
	Description

	fscanf(filePointerVariable, formatString, AddressList);
Example:

 fscanf(infile, "%lf%lf%lf", &x, &y, &z);
	Reads values from the file into variables with corresponding addresses in AddressList, using the formats in formatString. The int symbolic constant EOF is returned when end-of-file marker is detected.

	int ch = fgetc(filePointerVariable);
Example:

 int ch = fgetc(infile);
	Reads a character from the file. The int symbolic constant EOF is returned when end-of-file marker is detected. The character is returned as int

Note: When using fscanf to read data from a file, the programmer must know how the data is arranged in the file.

Reading to the end of file

The EOF constant that is returned by fscanf and fgetc when the end-of-file marker is detected can be used as a sentinel:
 Example1: Reading one line at a time to the end of file

 while(fscanf(infile, "%lf%lf%lf", &x, &y, &z) != EOF){

 // . . .

 }

Note: The above loop is equivalent to:

 int status = fscanf(infile, "%lf%lf%lf", &x, &y, &z);
 while(status != EOF){

 // . . .
 status = fscanf(infile, "%lf%lf%lf", &x, &y, &z);
 }

 Example2: Reading one character at a time to the end of file
 char ch;

 while((ch = fgetc(infile)) != EOF){

 // . . .

 }

 Some file output functions:
	function
	Description

	fprintf(filePointerVariable, formatString, expressionList);
Example:

fprintf(outfile, "Average = %.2f\n", sum / count);
	Write the values of the expressions in expressionList to the file, using the formats in the format string.

	fprintf(filePointerVariable, string);

Example:

fprintf(outfile, "Welcome to ICS 103\n");
	Write the string to the file.

	fputc(character, filePointerVariable);
Example:

fputc('H', outfile);
	Write the character to the file.

4- Close the files after processing the data using the fclose function.

 The function fclose is used to break the link established by the fopen between the filePointerVariable
 and the external file. The syntax of fclose is:
 fclose(filePointerVariable);

 After this function call, the filePointerVariable can be used for another file.

 Examples:

 fclose(infile);

 fclose(outfile);
When you have finished using a file you must always close it. If you do not close a file, then some of the data might not be written to it.
Standard Device Files

When a program is run, the keyboard is assigned the internal filename stdin. Similarly, the output device used for display (usually the screen) is assigned the filename stdout. These two filenames are always available for programmer use. Thus, the following are equivalent:

	input/output functions
	File input/output functions

	scanf("%d", &num);
	fscanf(stdin, "%d", &num);

	char ch = getchar();
	int ch = fgetc(stdin);

	printf("%d", num);
	fprintf(stdout, "%d", num);

	printf("ICS 103");
	fprintf(stdout, "ICS 103");

	putchar(character);
	fputc(character, stdout)

Example 1: The program below reads miles from data.txt, displays the value on screen, and writes the corresponding kilometers to result.txt
	#include <stdio.h>
#include <stdlib.h>
#define KMS_PER_MILE 1.609

int main(void) {

double kms, miles;

FILE *infile, *outfile;

infile = fopen("data.txt","r");
 if(infile == NULL){

 printf("Error: Failed to open data.txt\n");

 system("PAUSE");

 exit(1);

 }

outfile = fopen("result.txt","w");

fscanf(infile, "%lf", &miles);

fprintf(outfile, "The distance in miles is %.2f.\n", miles);

kms = KMS_PER_MILE * miles;

fprintf(outfile, "That equals %.2f kilometers.\n", kms);

fclose(infile);

fclose(outfile);
 system("PAUSE");

return 0;

}

Example 2: In the program below the EOF (End Of File) marker is used as a sentinel. The program reads its own text, character by character, and displays it on the screen.
Copy this program and save it as example2.c, then run it and you will see the whole program displayed on the screen.
	#include <stdio.h>
#include <stdlib.h>
int main (void){

 FILE *in;

 in = fopen("example2.c","r");
 if(in == NULL){

 printf("Error: Failed to open example2.c\n");

 system("PAUSE");

 exit(1);

 }
 char ch;

 while(fscanf(in,"%c",&ch) != EOF)
 printf("%c",ch);

 fclose(in);
 system("PAUSE");
 return 0;

}

Instead of using fcanf and printf we can use fgetc and fputc:

 #include <stdio.h>
#include <stdlib.h>
int main (void){

 FILE *in;

 in = fopen("example2.c","r");
 if(in == NULL){

 printf("Error: Failed to open example2.c\n");

 system("PAUSE");

 exit(1);

 }
 char ch;

 while((ch = fgetc(in)) != EOF)
 fputc(ch, stdout);
 fclose(in);

 system("PAUSE");

 return 0;

}
Example 3: The program below calculates the sum and average score of a class in a quiz; it then displays them on the screen. The quiz scores are read from an input file scores.txt.
#include <stdio.h>
#include <stdlib.h>
int main (void) {

 FILE *infile;

 double score, sum = 0, average;

 int count = 0, input_status;

 infile = fopen("scores.txt", "r");
 if(infile == NULL){

 printf("Error: Failed to open scores.txt\n");

 system("PAUSE");

 exit(1);

 }
 while(fscanf(infile, "%lf", &score) != EOF){

 printf("%f\n ", score);

 sum += score;

 count++;

 }

 average = sum / count;

 printf("\nSum of the scores is %f\n", sum);

 printf("Average score is %.2f\n", average);

 fclose(infile);
 system("PAUSE");
 return 0;

}

The contents of the input file scores.txt are:
	10.0

6.8 9.5

9.7 7.7

3.6 5.7 8.1

7.3 6.8

Laboratory Tasks

Note: You must use EOF controlled loop in all tasks.

Task 1: Write a program that reads a file data.txt shown below character by character. It then displays the number of digits, lowercase letters, uppercase letters, and other characters in an output file summary.txt as shown below.

Note: Character digits are represented internally as an interval with increasing characters from ‘0’ to ‘9’. Thus, any character digit belongs to the interval [‘0’,’9’]. The same applies for letters i.e. a lowercase letter belongs to the interval [‘a’,’z’], and an uppercase letter belongs to the interval [‘A’,’Z’].
	Input file: data.txt
	Output file: summary.txt

	kadFat%^&5453

as*(){}765

129(*&aBgKM

	Number of digits = 10

Number of lowercase letters = 9

Number of uppercase letters = 4

Number of other characters = 11

Note: If you don’t take care of checking new line character, you will get 13 for the number of other characters.
Task 2: The file scores.txt contains an unknown number of data records for students in a certain section. Each data record (i.e., each line in the scores.txt file) consists of two values: ID# and the score of a student.
Write a program that first reads the file to compute the average score of the students, it then reads the file a second time to distribute the students into two output files, good.txt containing those students whose scores are greater or equal to the average, and poor.txt, containing those students who scored less than the average.
Hint: After the first reading, the file reading pointer reaches the end of the file. There are two ways to start reading from the beginning of the file again; either close the file, then open it again or call rewind function to reset the file reading pointer:
 rewind (fileAddress) ;

where fileAddress represents the FILE* variable name used in the fopen statement for scores.txt file.
Input file scores.txt:

	206527 44.24

208530 75.38

207135 85.61

205241 91.51

204324 50.61

203357 68.28

202117 57.11

Output files:
	good.txt
	poor.txt

	ID SCORE

208530 75.38

207135 85.61

205241 91.51

203357 68.28
	ID SCORE

206527 44.24

204324 50.61

202117 57.11

Note: Since each ID# is outside the range for int (-32767 to 32767), use type long int (-2147483647 to 2147483647) for ID#; the format specifier for long int is the same as int namely %d.
Task 3: Using the same scores.txt file of task 2, write a C program that reads the data from this file and assigns a letter grade to each student based on the following grading policy:

	Score
	Grade

	score>= 90
	A

	80<= score <90
	B

	65<=score<80
	C

	50<=score<65
	D

	score<50
	F

Your result should be stored in a file grades.txt. The file must have three columns: ID#, SCORE and LETTER GRADE. Display each score with two digits after the decimal point.
Note: Since each ID# is outside the range for int (-32767 to 32767), use type long int (-2147483647 to 2147483647) for ID#; the format specifier for long int is the same as int namely %d.
Output file grades.txt:

	ID# SCORE LETTER GRADE

206527 44.24 F

208530 75.38 C

207135 85.61 B

205241 91.51 A

204324 50.61 D

203357 68.28 C

202117 57.11 D

[image: image1.png]

